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Abstract
Multi-shape matching is a central problem in various appli-
cations of computer vision and graphics, where cycle consis-
tency constraints play a pivotal role. For this issue, we pro-
pose a novel and efficient approach that models multi-shapes
as directed graphs for two-stage optimization, i.e., optimiz-
ing pairwise correspondence accuracy using landmarks, and
refining matching consistency through cycle consistency ba-
sis. Specifically, we utilize local mapping distortion to iden-
tify landmarks and extract the dimension of the functional
space, which is then used to upsample in the spectral do-
main, thereby producing smoother results. Next, to optimize
the consistency of correspondences, we introduce the cy-
cle consistency basis, which succinctly describes all consis-
tent cycles in the collection. We then propose cycle consis-
tency refinement, which resolves inconsistencies in cycles
efficiently via the alternating direction method of multipli-
ers. Our approach simultaneously balances the accuracy and
consistency of multi-shape matching, achieving lower cor-
respondence errors. Extensive experiments on several public
datasets demonstrate the superiority of our approach over cur-
rent state-of-the-art methods.

Code — https://github.com/YeTianwei/CyCoMatch

Introduction
Finding correspondences between non-rigid 3D shapes is a
fundamental and critical task in computer vision and graph-
ics (Van Kaick et al. 2011; Sahillioğlu 2020), with applica-
tions in shape analysis (Hartman et al. 2023), texture trans-
fer (Aigerman, Poranne, and Lipman 2015), and pose esti-
mation (Jiang et al. 2022). Unlike correspondences between
rigid shapes, which can be achieved through simple parame-
ter deformations, correspondences between non-rigid shapes
have to address more unpredictable deformations.

Near-isometric mappings between shapes have been
widely studied due to the characteristics of approximately
isometric deformations in the real world (Sahillioğlu 2020).
One highly emphasized approach is the functional maps
framework (Ovsjanikov et al. 2012). By establishing cor-
respondences between real-valued functions rather than
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Figure 1: Example of a qualitative comparison between our
method and the representative state-of-the-art multi-shape
matching method CCuantuMM (Bhatia et al. 2023) using
color transfer. Notably, our method demonstrates more ac-
curate and consistent results.

points, functional maps represent the correspondence based
on the spectral space of each shape, typically using the
eigenfunctions of the Laplace-Beltrami operator. Subse-
quent works have significantly enhanced the accuracy (Kov-
natsky et al. 2013; Nogneng and Ovsjanikov 2017), effi-
ciency (Burghard, Dieckmann, and Klein 2017), and robust-
ness (Rodolà et al. 2017) of the functional maps pipeline.

However, in practice, we often acquire multiple shapes
in a collection, such as multiple poses of the same target,
which naturally leads to the need for multi-shape matching
(Van Kaick et al. 2011). Meanwhile, a fundamental chal-
lenge of shape matching is that the limited information be-
tween pairs of shapes restricts the accuracy of the gener-
ated mapping. By considering the information from multiple
shapes, this problem can be effectively mitigated (Van Kaick
et al. 2011). In multi-shape matching, there is also a natural
constraint called cycle consistency (Huang and Guibas 2013;
Huber 2002), which states that composite mapping along a
cycle should be identity map. As a global map prior, cycle
consistency has long been used to jointly improve the effec-
tiveness of maps between multiple shapes. Considering the
cycle consistency constraint is key to achieving successful
multi-shape matching.

Given this background, many multi-shape matching
methods focus on better-leveraging cycle consistency con-
straints to achieve higher-quality correspondences. Early ap-
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proaches combine cycle consistency with the low-rank char-
acterization of matrices (Huang and Guibas 2013; Kezurer
et al. 2015). Due to a lifting strategy that dramatically in-
creases the number of variables, these methods do not scale
well to large problems, resulting in only sparse correspon-
dences. Subsequent methods impose cycle consistency con-
straints on pairwise functional maps (Shoham, Vaxman,
and Ben-Chen 2019; Wang, Huang, and Guibas 2013) but
neglect the spatial domain information of shapes (Huang,
Wang, and Guibas 2014; Huang et al. 2019). Recent methods
attempt to incorporate cycle consistency requirements ex-
plicitly into the optimization process (Bernard et al. 2019),
but they are limited by the size of the problem, often down-
sampling the number of shape points (Huang et al. 2020;
Gao et al. 2021). This approach also results in the loss of
local features and limits the effectiveness of matching.

Although several methods have recently been proposed to
solve multi-shape matching with success, they consistently
relate cycle consistency to the properties of matrices. For
example, the low-rank property of matrices is exploited in
CSM (Huang and Guibas 2013), functional mapping matri-
ces are used to construct canonical consistent latent bases in
Limit shapes (Huang et al. 2019), and permutation synchro-
nization of matrices is directly addressed in Hippi (Bernard
et al. 2019). However, all of these approaches ignore the
inherent information within the natural graph structure of
shape collection and fail to construct more concise cycle
consistency constraints.

To mitigate these limitations, we model multiple shapes
as directed graphs and perform a two-stage optimization for
accuracy and consistency. Firstly, to get higher-quality pair-
wise correspondences, we introduce local mapping distor-
tion to evaluate correspondence quality and identify land-
mark points, thereby avoiding the influence of low-quality
points (i.e., non-landmarks) in current correspondences. Af-
ter obtaining more accurate functional maps via landmarks,
we refine them by extracting functional space dimensions
and upsampling under spectral manifold wavelet constraints.
This approach eliminates the need for empirical design of
spectral embedding dimensions. Iterative dimension updates
also overcome the limitations of fixed dimensions, result-
ing in smoother mappings. Subsequently, we perform cycle-
consistency optimization on the pairwise correspondences.
Observing the exponential magnitude, uncertainty, and com-
plexity of the cycles, we introduce the cycle consistency ba-
sis, which succinctly describes all cycles that satisfy consis-
tency within a shape collection. Finally, we propose cycle
consistency refinement to eliminate inconsistencies in pre-
vious correspondences within cycles, and efficiently solve
it using the Alternating Direction Method of Multipliers to
obtain the final correspondences. We provide a qualitative
comparison between our method and the recent multi-shape
matching algorithm, CCuantuMM (Bhatia et al. 2023), in
Fig. 1, to demonstrate our superiority. In summary, the three
main contributions are as follows:

- We model multiple shapes as directed graphs and per-
form a two-stage optimization to ensure matching accu-
racy and consistency.

- We present the cycle consistency basis that intuitively
and effectively constrains the cycle consistency of the
functional mapping results.

- We demonstrate the superiority of our approach over the
current state-of-the-art on multiple public datasets.

Related Work
Functional Maps
The 3D shape is modeled as a smooth and compact two-
dimensional Riemannian manifold X , embedded in R3. The
space of square-integrable functions on the manifold X
is denoted as L2(X ) =

{
f : X → R,

∫
X f(x)2 dµ <∞

}
.

Fourier analysis of the manifold X is performed using the
Laplace-Beltrami operator ∆X . For i ≥ 1, there exists
an eigen-decomposition ∆Xφi = λiφi, with eigenfunc-
tions {φi}i≥1 as orthogonal bases and eigenvalues {λi}i≥1

as eigenvalues of L2(X ). Let the matrix ΦX ∈ Rm×k
denote the first k Laplace-Beltrami eigenfunctions of X ,
where each column corresponds to an eigenfunction and
each row corresponds to a point. We also denote ΛX =
diag(λX0 , λ

X
1 , . . . , λ

X
k−1) as the diagonal matrix containing

the first k Laplace-Beltrami eigenvalues.
Given a pointwise map T : X → Y , we consider a func-

tional map TF : L2(X )→ L2(Y) that maps functions from
L2(X ) to L2(Y). Thus, the result of mapping a function
f ∈ L2(X ) on X is TF (f) = f ◦ T−1. Next, using the
Laplace-Beltrami orthogonal bases {φXi }i≥0 and {φYj }j≥0,
the mapped result TF (f) can be expressed as:

TF (f) =
∑
j

∑
i

〈f, φXi 〉X 〈TF (φXi ), φYj 〉Y︸ ︷︷ ︸
cji

φYj . (1)

We define C = [cji] ∈ Rk×k to represent the map-
ping between the first k eigenfunctions, which encodes the
functional maps. To solve for the unknown matrix C, it is
the standard practice to implement several linear constraints
on C, such as constraints on preserving descriptors and
the commutativity of the Laplace-Beltrami operator (Ovs-
janikov et al. 2012). These constraints enable the functional
maps to be obtained by solving a least squares system.

Cycle Consistency Basis
The concept of cycle consistency basis is derived from
the well-studied notion of cycle bases in directed graphs
(Kavitha et al. 2009). A cycle basis comprises the smallest
set of cycles in a graph, with any cycle representable as a
linear combination of these bases. When extended to cycle
consistency basis, this concept identifies the smallest set of
cycles needed to enforce consistency across the entire graph
(Guibas, Huang, and Liang 2019).

Specifically, consider a directed graphG = (V,E), where
each vertex vi is linked with a domain Di and each edge
e = (i, j) involves a mapping fij from Di to Dj . Define a
composite mapping fc = fi1i2 ◦ · · · ◦fiki1 along a cycle c =
(i1, i2, . . . , ik, i1) in G. This mapping is cycle consistent if
it satisfies fc = Id for every cycle c in a set C. Given a
cycle set C and a cycle c /∈ C, we say that C induces c if
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Figure 2: Example of a collection of shapes modeled as a
directed graph G = (V , E), where vi ∈ V represents shape
Si and eij ∈ E denotes correspondence from Si to Sj .

there exists an ordered set of cycles {c1, . . . , cK} ⊆ C and
intermediate cycles c(k) (1 ≤ k ≤ K), where c(1) = c1, and
each c(k) is formed by adding new edges from ck to c(k−1)

and removing their common edges, i.e., c(k) = c(k−1) ⊕ ck,
ultimately forming the cycle c with c(K) = c. Therefore,
a cycle set C is considered a cycle consistency basis if it
induces all other cycles.

Method
This section outlines our multi-shape matching in the func-
tional maps framework, introducing cycle consistency basis
as constraints. Starting with initial correspondences, we con-
struct a directed graph to optimize the matching in two steps:
(i) optimizing the accuracy of pairwise correspondences us-
ing landmarks, and (ii) refining the consistency of matching
by generating cycle consistency basis from the graph.

Pairwise Correspondences via Landmarks
We assume to be given a collection of shapes S = {Si}ni=1
represented as triangular meshes with initial pointwise cor-
respondences {Tij}n,ni,j=1. We model S as a directed graph
G = (V , E), as illustrated in Fig. 2. The first step is to opti-
mize the accuracy of matches, using Local Mapping Distor-
tion (LMD) to evaluate the quality of current matches and
identify landmarks. For generality, we next discuss the cor-
respondence on any edge eij between Si and Sj .

Landmarks Identification The LMD is proposed for
near-isometric shapes, allowing for mapping accuracy eval-
uation without ground truth by geodesic distance preserva-
tion (Xiang, Lai, and Zhao 2020, 2021). Let T : S1 → S2

denote the pointwise map between two shapes. The LMD of
the map T at point xi ∈ S1 can be expressed as:

Dγ(T )(xi) =

∑
xj∈Bγ(xi)

A1(j)DET (xi, xj)∑
xj∈Bγ(xi)

A1(j)
, (2)

where Bγ(xi) = {xj ∈ S1 | dS1
(xi, xj) ≤ γ}

denotes the γ-geodesic ball of xi, A1 is the area el-
ement of the mesh of shape S1, and DET (xi, xj) =
1
γ |dS1(xi, xj)− dS2(T (xi), T (xj))| represents the distor-
tion in geodesic distance when mapping nearby points xi

Algorithm 1: Pairwise Correspondences Refinement
Input: Shapes Si, Sj , initial correspondence Tij
Parameter: Maximum iterations MaxIt, LMD thresholds
{εit}MaxIt

it=1
Output: Optimized Cij

1: while 0 ≤ it ≤MaxIt do
2: Use Local Mapping Distortion to identify landmarks;
3: Compute functional map using landmarks by Eq. (3);
4: Extract dimension kit of landmarks functional space;
5: Reconstruct functional map by Eq. (7);
6: Obtain final Cij by Eq. (8);
7: Transform Cij to Tij by NN search & encoded as Π;
8: end while

and xj to T (xi) and T (xj). Smaller values of Dγ(T )(xi)
indicate better continuity of the mapping T at xi. Based on
the definition of LMD, we can infer that Dγ(T )(xi) = 0
when T is an ideally isometric mapping. Conversely, there
exists some γ > 0 such that Dγ(T )(xi) = 0 when T is
isometric.

By setting a threshold ε, we identify a set of well-matched
points {(xl, T (xl)) | Dγ(T )(xl) ≤ ε}, and call these land-
marks {xl}ml=1, where m is the number of selected points.

Dimension Extraction By leveraging landmarks {xl}ml=1,
we transform the initial Tij into a functional mapping:

Clij = ΦSi({xl}ml=1)>ΠΦSj ({Tij(xl)}ml=1), (3)

where Πij is a permutation matrix encoded by Tij . Then,
based on the distribution of landmarks in the functional
space, dimension k is extracted using principal components:
UΣV > = ΦSi({xl}ml=1)>ΦSj ({Tij(xl)}ml=1). Due to the
potential degradation, k is much smaller than the number of
landmarks. We determine k by truncating when the changes
in 10 consecutive singular values fall below 0.1.

The dimension k derived from landmarks avoids the need
for empirical design or simple incremental changes typi-
cally required. It also prevents low-quality points (i.e., non-
landmarks) from introducing errors during the subsequent
upsampling process.

Functional Map Reconstruction After determining the
dimensions of the landmark functional space, we reconstruct
the functional space using functional maps constrained by
multiscale spectral manifold wavelets (Hu et al. 2021).

Given a smooth filter g(λ) : R+ → R+, the spectral man-
ifold wavelets at the scale s and point y are defined as:

ψs,y(x) =
∑
i≥0 g(sλi)φ

∗
i (y)φi(x). (4)

To fully analyze the characteristics of a shape at different
scales, the scale parameter s is typically sampled as a set of
discrete points {sl}Ll=0, and L is a predefined scale number.

Then, we can derive two wavelet matrices ΨSi
s =

ΦSig (sΛSi) Φ+
Si

and Ψ
Sj
s = ΦSjg

(
sΛSj

)
Φ+
Sj

for shapes
Si and Sj . Therefore, the Fourier coefficient matrices of
the wavelet matrices ΨSi

s and Ψ
Sj
s are g(sΛSi)Φ

+
Si

and
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g(sΛSj )Φ
+
Sj

, respectively. In the case of functional space di-
mension k, we define the following optimization problem:

min
Π,Crk

L∑
l=0

∥∥∥Crkg(slΛkSi) (ΦkSi)
+−g

(
slΛ

k
Sj

)
(ΦkSj )

+Π>
∥∥∥2

F
,

s.t. Π1 = 1, Π>1 ≤ 1, (5)

where 1 is an all-1 vector of the same dimension as Π. We
simplify the problem by alternately optimizing Crk and Π,
and introduce the analytic solution of Crk with fixed Π:

Crkg(slΛ
k
Si)(Φ

k
Si)

+ = g(slΛ
k
Sj )(Φ

k
Sj )

+Π>. (6)

Eq. (6) still involves solving a large number of lin-
ear systems. However, it can be simplified when a suit-
able set of filters is employed. Specifically, the wavelet set
{g(slλ)}Ll=0 constitutes a Parseval framework (Leonardi and
Van De Ville 2013) that satisfies

∑
s g

2(sΛ) = I, resulting
in the final solution:

Crk =
∑L
l=0 g(slΛ

k
Sj

)(ΦkSj )
+Π>ΦkSig(slΛ

k
Si

). (7)

We obtain the final functional mapping Cij by combining
Cl from the landmarks transformation and Crk reconstructed
under the functional space dimension k, which encompasses
both spatial and spectral domain information:

Cij = αClij + (1− α)Crk , (8)

where α is a trade-off parameter. Subsequently, Cij is trans-
formed into Tij by NN search and encoded as Π, and the
threshold ε of LMD is gradually reduced in iterations to ob-
tain more accurate landmarks. We summarize the whole pro-
cess in Algorithm 1.

Cycle Consistency Refinement
Following the pairwise correspondences optimization, we
generate a cycle consistency basis from the graph G =
(V , E) and then further optimize the consistency of Cij .

Cycle Consistency Basis Generation Generating a cycle-
consistency basis consists of three steps (Guibas, Huang,
and Liang 2019). The first step is to construct the super-
set cycle set Csup. We begin by constructing the breadth-first
spanning tree T rooted at each vertex vi ∈ V . From this
tree, we derive a minimal cycle consistency basis C(vi) =⋃
e∈E\T ce. Specifically, for each edge pair e = (i, j) ∈
E\T , we obtain the cycle ce = (i, j) ∼ pji, where pji is the
unique path from j to i on T . Subsequently, we construct
Csup :=

⋃
vi∈V C(vi) and set Cmin to be the minimum depth

cycle consistency basis.
Next, let ve ∈ {0, 1}|E| be the indicator vector for edge e

and denote vc =
∑k
l=1 v(il,il+1) (where ik+1 = i1) as the in-

dicator vector for cycle c = (i1, i2 . . . , ik, i1). We optimize
cycle weights ωc by formulating the following program:

min
ωc≥0,s1,s2

s2 − s1

s.t.


s1I ≤

∑
e∈E vev

>
e +

∑
c∈Csup

ωcvcv
>
c ≤ s2I,∑

c∈Csup
|vc|2ωc = θ,

ωc ≥ δ, ∀c ∈ Cmin,

(9)

where the parameter θ balances the loss and regularization
terms. The solution of objective Eq. (9) follows the original
work (Guibas, Huang, and Liang 2019).

Then, we control the cycle set size by importance sam-
pling to ensure that the weighted sum of the sampled set
Csample ⊂ Corig := Csup\Cmin approximates that of the original
set Corig. Let the maximum weight be ωmax = maxc∈Corig ωc
and consider proper size M for Csample. Choose η ≤ 1 such
that M ≤

∑
c∈Corig

(ωc/ωmax)η . We define an independent
random variable xc taking values as:

xc =

{
1, with pc,
0, with 1− pc.

(10)

Subsequently, the weights ωc of each cycle c are cor-
rected:

ωc = ωc/pc, pc := M · ωηc /
∑
c∈Corig

ωηc . (11)

Finally, we obtain the sampled Csample as the cycle consis-
tency basis.

Consistent Constraint Formulation With the cycle-
consistency basis generated, we derive the consistent func-
tional mapping Cij , (i, j) ∈ E by solving the following
problem:

min
Cij

1

|E|
∑

(i,j)∈E

‖Cij − C0
ij‖2F + β

∑
(i,j)∈E

‖C>ijCij − I‖2F

+ µ
∑

c={i1···iki1}∈C

ωc
∥∥Ci1i2 · · ·Cik−1ikCiki1 − I

∥∥2

F
,

(12)
where C0

ij is the initial functional mapping optimized in the
first step of our method, ωc are cycle weights, and β, µ are
the regularization parameters. The second term ensures the
orthogonality of Cij , and the third term constrains the cycle
consistency.

ADMM Optimization Eq. (12) involves the product and
summation operations of multiple matrices, and the last
term, in particular, contains the concatenated multiplication
of various matrices, making it complicated. For this rea-
son, we use the alternating direction method of multipli-
ers (ADMM) to solve it. Specifically, the augmented La-
grangian function of Eq. (12) is:

L(C,Z,U) =
1

|E|
∑

(i,j)∈E

‖Cij − C0
ij‖2F

+ β
∑

(i,j)∈E

‖Z>ijZij − I‖2F + µ
∑
c∈C

ωc

∥∥∥∥∥∥
∏

(i,j)∈c

Zij − I

∥∥∥∥∥∥
2

F

+
∑

(i,j)∈E

〈Uij , Cij − Zij〉+
ρ

2

∑
(i,j)∈E

‖Cij − Zij‖2F ,

(13)
where Zij is an auxiliary variable constrained by Cij = Zij
and Uij is a Lagrange multiplier. Then, Cij , Zij , and Uij are
updated alternately until convergence:

Ck+1
ij =

∑
(i,j)∈E C

0
ij + ρ

∑
(i,j)∈E(Z

k
ij − Ukij)

|E|+ ρ
, (14)
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Cycle Consistency Refinement

Figure 3: The schematic diagram illustrates the flow of our approach, divided into two parts: pairwise correspondences and
cycle consistency refinement.

Algorithm 2: Overall Process of Our Approach
Input: Shape collection S = {Si}ni=1, initial correspon-
dence {Tij}n,ni,j=1
Parameter: Maximum iterations MaxIt, LMD thresholds
{εit}MaxIt

it=1 , α
Output: Optimized C

1: Model S as a graph G = (V, E);
2: for every eij in graph G do
3: Obtain the optimized Cij by Algorithm 1;
4: end for
5: Generate superset cycles Csup;
6: Optimize cycle weights by Eq. (9);
7: Importance sampling to obtain cycles C by Eq. (11);
8: Construct optimization problem for C by Eq. (12);
9: Formulate the Lagrangian function by Eq. (13);

10: while not convergence do
11: Update Lagrangian variables by Eq. (14) - Eq. (16);
12: end while

Zk+1
ij =

Zkij
β + µ+

∑
c∈C ωc

,

Zkij = µ
∑
c∈C

ωc

 ∏
(i,j)∈c

Zkij − I

+
∑

(i,j)∈E

(
Ckij + Ukij

)
+ βZkij

(
(Zkij)

>Zkij − I
)
,

(15)

Uk+1
ij = Ukij + Ck+1

ij − Zk+1
ij . (16)

We empirically set the parameters ρ = 10−3, β = µ = 1,
and run ADMM until convergence. Finally, the overall pro-
cess is summarized in Algorithm 2, with the final converged
C as the output, and is visually represented in Fig. 3.

Parameter Setting
Our method introduces three hyperparameters, α, MaxIt,
and {εit}MaxIt

it=1 . The following explains how to set them.
Parameter α balances the contributions of Clij and Crk in

the final Cij from Eq. (8) and varies from 0.1 to 0.9. We
use the TOSCA (Bronstein, Bronstein, and Kimmel 2008)
dataset as a test set to determine the appropriate value. As
shown in Fig. 4, both relative geodesic error and cycle error
are minimized when α is set to 0.3.

Parameter {εit}MaxIt
it=1 is the key threshold for determining

landmarks at each iteration, with its length corresponding
to the value of MaxIt. Empirically, We set {εit}MaxIt

it=1 =
[0.12, 0.1] and MaxIt = 2. This configuration balances
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Figure 4: Parametric analysis of α, including relative
geodesic error (Red), average runtime (Green), and cycle er-
ror (Blue) of our method for different α values.

geodesic error, cycle error, and runtime based on the Local
Mapping Distortion values during actual runs.

Experiments
In this section, we apply our method to challenging datasets
and compare it with state-of-the-art methods.

Implement Details
Dataset Three public datasets are used in our evaluation
experiments:

• FAUST (Bogo et al. 2014) contains 100 shapes repre-
senting 10 poses from 10 different human subjects, with
each shape containing 6,890 vertices. For quantitative
evaluation, we group the 10 poses of each subject into
10 independent shape collections.

• SCAPE (Anguelov et al. 2005) includes 71 shapes, each
depicting a different pose of the same human subject,
with each shape comprising 12,500 vertices. For quan-
titative analysis, we randomly select 10 shapes to create
a shape set, resulting in a total of 7 shape sets.

• TOSCA (Bronstein, Bronstein, and Kimmel 2008) con-
sists of 76 shapes across 8 categories, including both
animal and human forms. Each shape contains approx-
imately 10,000 vertices and includes ground truth data
for benchmarking. For quantitative evaluation, we treat
each category as an individual shape set.

Evaluation Our evaluation metrics include relative
geodesic error to assess match accuracy and cycle error to
evaluate cycle consistency.
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Figure 5: Evaluations of our method with other methods on FAUST, SCAPE, and TOSCA datasets with CQCs.

Methods FAUST SCAPE TOSCA

Error Cycle Error Error Cycle Error Error Cycle Error

Shape Matching Methods

Zoomout 0.0563 0.0199 0.2257 0.0659 0.1940 0.0656
Sinkhorn 0.0392 0.0251 0.0776 0.0460 0.0275 0.0089

MWP 0.0031 0.0015 0.0092 0.0049 0.0270 0.0081
PC-GAU 0.0037 0.0022 0.0105 0.0060 0.1539 0.0569
URSSM 0.0066 0.0020 0.0211 0.0079 0.1440 0.0525
LOPR 0.0030 0.0015 0.0089 0.0048 0.0266 0.0079

Multi-Shape Matching Methods

CSM 0.0954 0.0532 0.2589 0.1394 0.1543 0.0634
Limit Shapes 0.0337 0.0151 0.0704 0.0355 0.0880 0.0359

Consistent Zoomout 0.0081 0.0025 0.0117 0.0027 0.0272 0.0031
CCuantuMM 0.0316 0.0345 0.0559 0.0623 0.1226 0.0826

Ours 0.0030 0.0014 0.0075 0.0034 0.0251 0.0066

Table 1: Average relative geodesic errors and cycle errors of our method and state-of-the-arts on three public datasets, where
the bold indicates the best and the underline indicates the second.

• Relative Geodesic Error. Following the Princeton
benchmark protocol (Kim, Lipman, and Funkhouser
2011), matching accuracy is evaluated by calculating the
geodesic distance between a matching pair (x, y) and the
ground truth (x, y∗), normalized by the diameter of shape
Y: ε(x) =

dgeo(y,y
∗)

diam(Y) . The average relative geodesic er-
ror is reported, along with the Correspondence Quality
Characteristic (CQC) curve showing the percentage of
matches with relative geodesic error below r.

• Cycle Error. For point-to-point correspondences in a cy-
cle c = {S1, S2, . . . , S|c|, S1}, the composite map Tcyc =
Ti1i2 ◦· · ·◦Ti|c|i1 is computed along the entire cycle. The
cycle error is defined as the average geodesic distance
between Tcyc and the identity map Tid, normalized by the
cycle length: ecyc = 1

|c|
∑
i dgeo{Tcyc(i), Tid(i)}.

Competitors The competitor methods include shape
matching methods like Zoomout (Melzi et al. 2019),
Sinkhorn (Pai et al. 2021), MWP (Hu et al. 2021), PC-GAU
(Colombo, Boracchi, and Melzi 2023), URSSM (Cao, Roet-

zer, and Bernard 2023) and LOPR (Xia et al. 2024), along-
side multi-shape matching methods such as CSM (Huang
and Guibas 2013), Limit Shapes (Huang et al. 2019), Con-
sistent Zoomout (Huang et al. 2020), and CCuantuMM
(Bhatia et al. 2023).

Settings The SHOT (Tombari, Salti, and Di Stefano 2010)
descriptor space initializes MWP, PC-GAU, LOPR, Con-
sistent Zoomout, and our method. Competitor methods use
author-provided settings and code, with the number of
eigenfunctions set to 500 or the maximum dimension of
Zoomout and Consistent Zoomout upsampling iterations.
Experiments are conducted on a desktop computer with a
3.50GHz Intel Core i9-9920X CPU and MATLAB R2018a,
with GPU-accelerated K-nearest neighbor searches.

Results Analysis
The quantitative evaluations on three public datasets, includ-
ing CQC curves, relative geodesic errors, and cycle errors,
are presented in Fig. 5 and Table 1. LOPR(Xia et al. 2024),
as a pairwise shape matching method, performs well by re-
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LOPR Ours GTTarget LOPR Ours GTTarget

Figure 6: Comparison of qualitative results using color trans-
fer on shape pairs between our method and LOPR. The first
and last columns denote the target and source shapes with
ground truth, respectively. Rows correspond to shapes from
FAUST (top), SCAPE (middle), and TOSCA (bottom).

Methods FAUST SCAPE Centaur Wolf

#Vertices 6890 12500 10000 4344

Zoomout 13.2 56.9 22.0 6.6
MWP 1.9 12.0 3.4 1.5
LOPR 4.9 14.7 4.0 0.9

CCuantuMM 18546 32308 14116 2130.9
Ours 23.8 59.8 27.3 7.1

Table 2: Average runtime (in seconds) comparing our
method with state-of-the-art methods across different res-
olutions is reported for the FAUST, SCAPE, and TOSCA
datasets (Centaur and Wolf).

covering pointwise maps using local constraints. However,
its reliance on local information leads to increased errors
when consecutive local mismatches occur within the shape
set. Consistent Zoomout(Huang et al. 2020) demonstrates a
notable advantage in reducing cycle errors, achieving high
consistency and performance by introducing canonical con-
sistent latent bases. Nevertheless, our method achieves lower
error levels in most scenarios. Furthermore, Fig. 6 illustrates
the superior matching accuracy of our method compared to
LOPR on a pair of shapes, while Fig. 7 showcases its en-
hanced matching consistency against Consistent Zoomout
within a shape collection. These visual comparisons empha-
size the superior accuracy and consistency of our method.

Moreover, Table 2 displays the average runtime of dif-
ferent methods at different resolutions. While the runtime
of our method is acceptable, there is still room for improve-
ment, particularly due to the use of geodesic distance matrix.

GT Consistent Zoomout OursGT Consistent Zoomout Ours

Figure 7: Qualitative comparison results between our
method and Consistent Zoomout using color transfer. The
first column denote the identity mapping Tid, while the sec-
ond and third columns display the composite mapping Tcyc
for Consistent Zoomout and our method along the cycle c,
respectively. Rows correspond to shapes from FAUST (top),
SCAPE (middle), and TOSCA (bottom).

Model I II III IV Ours
Error 0.0115 0.0255 0.0106 0.0117 0.0095

Cycle Error 0.0073 0.0174 0.0070 0.0078 0.0060

Table 3: Ablation study results without: (I) landmark points
functional maps; (II) spectral domain upsampling to recon-
struct functional maps; (III) cycle consistency refinement;
(IV) local mapping distortion to determine dimension.

Ablation Study
We conduct ablation experiments to analyze each compo-
nent’s contribution, as shown in Table 3. The components
are highly interdependent, with accuracy and consistency
significantly declining if any are removed, especially the
spectral domain upsampling module.

Conclusion
In this paper, we presented a novel and efficient approach to
multi-shape matching with a more concise cycle consistency
formulation. By modeling shapes as directed graphs, we de-
rived cycle consistency basis as constraints. The method
employs a two-stage optimization: optimizing pairwise cor-
respondence accuracy via landmarks and refining consis-
tency through cycle consistency basis. Experiments on three
benchmarks show that our method outperforms state-of-the-
art techniques in accuracy and consistency. Additionally, ab-
lation experiments validate the effectiveness of each compo-
nent.
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